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Abstract

The objective of this research is to deter-
mine what -degree of synergistic behavior
can be achieved from combining reasoning
methodologies in a proper framework, where
the strengths of one methodology compen-
sate for the weaknesses in another, and re-
sult in a level of performance not achievable
by any of the methods individually. We se-
lected four complementary reasoning meth-
ods (case-based reasoning, rule-based reason-
ing, procedural reasoning, and model-based
reasoning) for research. ‘The integrating
architecture modifies the traditional black-
board problem-solving model to allow mul-
tiple reasoning approaches to be combined,
A control algorithm for the system is derived
from heuristics for employing each of the in-
dividual reasoning methods and established
blackboard control principles. A prototype
demonstrates the production of a synergistic
effect by diagnosing faults iu a subsystem of
the Hubble Space Telescope. Four aspects of
the synergism are noted: cooperation, confir-
mation, refutation, and follow-up. We define
these terms and discuss the power gain pos-
sible with a integrated reasoning approach to
a problem-solving task.

1 Introduction

Earlier research [Skinner 88, Skinner & Luger 91)
strongly suggested that the best approach to many
problem-solving tasks may not be through a single
method of reasoning, but rather by allowing several
reasoning methods to be blended together. This view
1s compatible with that of researchers in the larger
field of hybrid representation in which systems employ
two or more integrated subsystems, each with distinet
representation languages and inference systems. Re-
searchers often cite the ease of expression and increase
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in efficiency from allowing specialized languages as the
major advantages of using hybrid representation [Mc-
Skimin & Minker 79, Cohn 89, Frisch 89].

The blending of reasoning methodologies raises ques-
tions about the relationship between diverse knowl-
edge representations and the control of an architec-
ture for their integration. In our current research
we analyze selected reasoning methodologies and use
this analysis to design a system that benefits from
their individual strengths while minimizing their re-
spective weaknesses. The belief is that combining rea-
soning methodologies in the proper framework can re-
sult in synergism. We have designed such a frame-
work through modifications to the traditional black-
board problem-solving model.

We developed a prototype for diagnosing faults in
the Hubble Space Telescope Reaction Wheel Assembly
and observed synergism through interactions best' de-
scribed as cooperation, confirmation, refutation, and
follow-up. The remainder of this paper provides an
analysis of the reasoning methods employed, a descrip-
tion of the prototype, an explanation of the interac-
tions observed, and an analysis of their benefits.

2 Synergistic Reasoning

Synergistic reasoning occurs when a system employ-
ing multiple reasoning methodologies is able to solve
problems that cannot be solved by any single method.
To develop such a system it is necessary to select rea-
soning methods that are complementary, as opposed to
redundant, and to design and develop a structure capa-
ble of supporting their use in an opportunistic manner.,
The four reasoning approaches selected for integration
are: case-based reasoning (CBR), rule-based reasoning
(RBR), conventional (or procedural) reasoning (CR),
and model-based reasoning (MBR). We designed an
architecture for integrating the reasoning methodolo-
gies by modifying the traditional blackboard architec-
ture. We call the resulting system the Synergistic Rea-
soning System (SRS).
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The difference between SRS and the traditional black-
board model can be understood by contrasting analo-
gies. A common analogy used to describe the tradi-
tional blackboard model is that of a group of people
trying to assemble a jigsaw puzzle on a large sticky
blackboard. Each member of the group looks at his
or her pieces to see whether any fit with the pieces al-
ready on the blackboard. If so, those with appropriate
pieces go up to the blackboard and update the evolv-
ing solution. The new updates cause other pieces to
fall into place, allowing additional pieces to be added.
The entire puzzle can be solved in complete silence -
there is no need for direct communication between the
individuals. The apparent cooperative behavior is me-
diated by the state of the solution on the blackboard
[Engelmore 88, Luger & Stubblefield 93].

An analogy for SRS is a person taking a closed-book
test. All of the knowledge to be used during the test
is self contained. However, the person is likely to use
several different methods of reasoning while taking the
test including relying on past experiences, employing
heuristics, following procedures, or developing a men-
tal model of a problem. These approaches roughly
correspond to the machine reasoning methods of CBR,
RBR, CR, and MBR respectively.

Implementing this approach requires a fundamental
modification to the blackboard model. Rather than
partitioning the domain knowledge functionally into
knowledge sources, SRS segments the problem-solving
approach into reasoning modules, with each individual
module employing one of the reasoning methodologies.
The system dynamically switches between the reason-

ing modules as necessary to solve the problem.

This approach produces a synergistic eflect through
cooperation, confirmation, refutation, and follow-up.
Cooperation allows the individual reasoning modules
to post partial solutions, enabling the system to solve
problems that could not be solved by any single mod-
ule. Thus, one module posts a partial solution not ob-
tainable by any of the other modules, and while this
module might not be able to generate the entire so-
lution, one of the remaining modules, also unable to
generate the desired solution from the original prob-
lem, is able to do so based on this new result.

Confirmation allows reasoning modules to verify re-
sults from other modules. As an example, when the
RBR module recommends a tactic for solving a prob-
lem, the CBR may be able to provide past cases in
which the tactic was successful. Confirmation is used
to increase confidence in the conclusion or to choose
between two competing tactics for problem solving.

Refutation is the ability of one reasoning module to re-
fute conclusions of another module. That is, while in-
complete information may cause one reasoning module
to arrive at an incorrect conclusion, a second module
may have information that disputes this conclusion.

Using the same example as above, the CBR, may be
able to demonstrate that past attempts at solving the
problem with the tactics proposed were unsuccessful.
Again, this is used to increase confidence in a conclu-
sion or to select between competing proposals.

Follow-up searches for trends in the conclusions of the
system indicative of deeper problems. As an example,
CBR may be used to detect repeated adjustments to
a system that alleviates a problem only temporarily.
This repeated occurrence of the problem is then seen
as symptomatic of a deeper problem. '

3 A Survey of the Selected Reasoning
Methodologies

We wished to design an architecture that capitalizes
on the strengths of each reasoning methodology while
compensating for their individual weaknesses. As an
initial step, each of the four selected reasoning method-
ologies were evaluated; a summary of their character-
istics is shown in Table 1. A detailed analysis and
explanation of the table can be found in [Skinner 92].

Obviously this is a partial list, one which will grow
as research continues. The table reveals advantages
unique to each individual reasoning method. Specif-
ically, CBR employs historical knowledge andoffers
shortcuts, error checking, and insight. RBR employs
experiential knowledge and offers speed, high perfor-
mance in a limited domain, and modularity. Conven-
tional reasoning employs procedural knowledge and
offers simplicity, correctness, and verifiability. MBR
employs structural knowledge and offers robustness,
transferability, and causal explanations.

The disadvantages of each reasoning methodology in
Table 1 can often be compensated for by one of the
other reasoning modules. Cases can supplement in-
complete or inconsistent rules by providing exceptions,
interpretations, examples, and explanations; and can
reduce the time requirements for MBR by recording
results or explanations for future use. Rules can im-
prove performance of CBR in almost all aspects of the
process (i.e., bootstrapping, anticipating problems, in-
dexing, modifying cases, verifying solutions) and can
enable a MBR system to respond faster, search mod-
els more efficiently, include experiential knowledge,
and focus reasoning. Models can improve CBR with
causal explanations and can improve the robustness
and explanation capabilities of RBR. In addition, each
methodology can act as a backup in case of failure of
the other methodologies.
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Table 1: Characteristics of Reasoning Methodologies (Summary),

Method Advantages Disadvantages

CBR ability to employ historical knowledge lacks fundamental knowledge of domain
allows shortcuts in reasoning complexity issues with large case base
avoids past errors hard to define criteria for matching
no domain model required hard to define criteria for indexing
existing cases for some domains difficult to construct/maintain index
knowledge acquisition relatively easy
coding relatively easy
clever indexing can add insight

RBR ability to employ experiential knowledge lacks fundamental knowledge of domain
modularity eases construction & maintenance | cannot solve unforseen problems
high performance possible in limited domain rapidly degrades near edges of domain
simple method of providing explanations explanations often inadequate
rules map naturally onto search space knowledge is task dependent
rules are easier to trace and debug difficult to verify heuristics
steps in process are open to inspection multiple experts may disagree
separation of knowledge/control

CR ability to employ procedural knowledge must have algorithm for task
correct answers when problem is constrained | diffcult to incorporate heuristics
proven V&V techniques exist
simple implementation

MBR ability to employ structural knowledge lacks experiential knowledge of domain
robust a CPU/ time intensive
knowledge transferable between tasks requires an explicit domain model
can provide causal explanations
versatile

4 Controlling Multiple Reasoning
Paradigms

We derived a control algorithm suitable for a syner-
gistic approach by combining principles for controlling
blackboards with the findings from the survey of the
reasoning methodologies. This algorithm is exercised
by an Executive Module (EM) which is responsible for
coordinating the problem-solving process.

In blackboard terms, scheduling knowledge sources to
minimize the number of steps in a problem-solving ses-
sion is known as the focus of attention. The developers
of HEARSAY-II identified five fundamental principles
for controlling the focus of attention [Hayes-Roth 77).
While these principles are defined in terms of knowl-
edge sources, we have adapted therm to the control of
reasoning modules. The principles are:

(1) The competition principle: the best of several local
alternatives should be performed first. This governs
behavioral options which are locally competitive in the
sense that a definite outcome of one may obviate the
others, :

(2) The validity principle: knowledge sources oper-
ating on the most valid data should be executed
first. Everything else constant, the preferred knowl-

edge source should be the one working with the most
credible data. s

(3) The significance principle:  knowledge sources
whose responses are most important should be exe-
cuted first. This principle ensures the most important
steps are performed first.

(4) The efficiency principle: knowledge sources which
perform most reliably and inexpensively should be ex-
ecuted first,.

(5) The goal satisfaction principle: knowledge sources
whose responses are most likely to satisfy processing
goals should be executed first.

When applied in the context of SRS, these principles
led to the following set of general heuristics. From
Principle (1), recommendations should be followed in
order of their specificity, likelihood, and frequency.
From Principle (2), recommendations should be exe-
cuted according to their confidence values. From Prin-
ciple (3), suspected catastrophic or time critical rec-
ommendations should be capable of preempting other
tasks. From Principle (4), the most efficient reason-
ing modules should be used first. From Principle (5)
top-level goals should have priority over sub-goals.

Additional heuristics derived from the advantages of
each methodology as given in Table 1 suggest that:
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(1) CR should be used whenever a polynomial-time
algorithm exists; (2) CBR should be used if no specific
recommendation is present, and as a means of error
checking; (3) each of the reasoners should be used as a
failure backup to the others; (4) RBR should be used
for quick fixes, if no causal explanation is required, or if
time constraints are strict; (5) MBR should be used if
a causal explanation is required, but only if adequate
time is available; and (6) the results of the sessions
should be stored by the CBR module.

The resulting guidelines for a diagnostic application
are shown below grouped by the principle from which
they were derived. These guidelines are by no means
static - the intent is for the set to grow and to be
refined as dictated by results of continuing research in
integrating reasoning paradigms. While no priority is
intended, we chose to implement them in the order of
appearance.

From the efficiency principle:

(a) If two reasoning modules can perform a task,
choose the most efficient for that task.

(b) If status is nominal,
employ the CR module.

(c) If more than one reasoner can act on a goal,
employ in the order of RBR, CBR, MBR.

(d) If no specific recommendation is present,
employ the CBR module.

(e) If no specific recommendation exists & CBR fails,
employ the MBR module.

(f) Ifno recommendation exists & CBR, MBR fail,
employ the RBR module.

From the competition principle:
(g) If multiple components are suspected,
diagnose the most specific (lowest level).
(h) If multiple recommendations exist,
perform the one closest to isolating a fault.
(i) If multiple components are suspected,
diagnose the least reliable.
(j) If multiple components are suspected,
diagnose the one with the most recommendations.

From the significance principle:

(k) If a symptom could be catastrophic,
diagnose that symptom first.

(1) If a recommendation is time critical,
perform it first.

From the strengths of the individual methodologics:
(m) If time is constrained,
employ RBR.
(n) If no causal explanation is required,
employ RBR.
(o) If causal explanation required & time allows,
employ MBR.
(p) If the diagnosis session is complete,
employ CBR to store session results.

From the goal satisfaction principle:
(q) If multiple goals exist,
act on the top-level goals first.

From resulls of current research:
(r) If a fault has been diagnosed,
initiate confirmation, refutation, & follow-up.

Guideline (a) states the most efficient and reliable rea-
soning module will be used to solve a problem; this is
the general case for all reasoning modules. Guidelines
(b)-(f) implement (a) for ordering the recommenda-
tions of the four selected reasoning modules and se-
Jecting between competing modules to achieve goals.
Cuideline (b) is the specific case in which no fault has
occurred. In this case, conventional algorithms ex-
ist capable of handling the situation at a lower cost
(in terms of time and space requirements) and with a
higher reliability than any other reasoning method.

Guideline (c) presents the criteria for choosing be-
tween competing reasoning modules to perform a task.
The priority used is to rely on RBR, then CBR, then
MBR. In general, robustness increases and efficiency
decreases in order of CBR, RBR, and MBR. By favor-
ing RBR, a balance between robustness and efficiency
is achieved. CBR is selected second because it can be
executed quickly.

Guidelines (d), (e), and (f) handle the situation when
no specific recommendations are present. Under these
circumstances, the reasoning modules are prioritized
as CBR first, then MBR, then RBR. The Executive
Module forms a goal for the CBR to match on the list
of symptoms in the current session; the CBR module
returns a recommendation to diagnose the faulty com-
ponent from a similar past case. Next, a goal is set
for the MBR to diagnose each of the components in
the list of suspected components (if the list is empty, a
goal is created to diagnose the model of the entire sys-
tem). Finally, a goal is created for the RBR module to
diagnose the current list of symptoms and return ap-
propriate recommendations. The rationale behind the
prioritization is that the information available favors
CBR over MBR, and MBR over RBR. At least one
symptom is guaranteed to be present (otherwise the
CR module would be in control), and the case base is
indexed by symptoms. The list of suspects provides a
focus for the MBR to diagnose the fault. While the
RBR may be able to diagnose the symptom, it was
unable to do so with the information available at the
time the symptom was first recorded.

Guidelines (g) and (h) are implemented by tracking
the level of the subcomponent suspected. The entire
system under diagnosis is designated Level 1 with all
direct subcomponents assigned to Level 2, and in gen-
eral, subcomponents of a component on Level n are
assigned Level n+1 . Under this scheme, a fault iso-
lated to Level n is at a lower level and more specific
than a fault isolated to Level n-1. For purposes of this

ey
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research, a heuristic is employed that faults isolated
to a lower level are closer to isolating the fault; this is
strictly true only if all subcomponents have the same
number of levels.

Guideline (i) advises that the least reliable of the com-
ponents suspected be diagnosed first because this is the
component most likely to be the cause of the fault.
This is implemented by comparing the values of the
Reliability slots of the components. Reliability is ex-
pressed as the mean time between failure, in hours, for
the component.

Guideline (j) favors the most frequently proposed rec-
ommendation. It is implemented by counting the num-
ber of occurrences pending for each recommendation
and executing the recommendation with the highest
number of occurrences.

Guidelines (k) and (1} are from the significance princi-
ple; catastrophic or time critical events should be han-
dled first. Guideline (k) is implemented by diagnosing
catastrophic symptoms first. Guideline (1) is imple-
mented by considering time-critical recommendations
first. Both catastrophic symptoms and time-critical
recommendations are application dependent and de-
termined a priori.

Guidelines (m)-(o) arise from the strengths of the rea-
soning methodologies and require knowledge of the
user’s desires. They are implemented through mes-
sages posted on the blackboard. That is, a user may
post that a causal explanation is required or that time
is constrained on the blackboard. The default values
are that a causal explanation is not required and time
is not constrained.

Guideline (p) dictates the problem-solving information
be stored for use in future diagnostic sessions. This is
accomplished by the CBR module.

Guideline (q) is due to the goal satisfaction principle.
Goals in the system are stored hierarchically; a top-
level goal may have sub-goals. This guideline is im-
plemented by acting on top-level goals first (i.e., goals
without links to higher level goals).

Guideline (r) is a result of this research and the dis-
covery of how SRS can produce synergism. It is imple-
mented by posting the three goals when a diagnosis is
reached. Each module then responds according to its
ability.

5 The SRS Prototype

We constructed a prototype of the Synergistic Reason-
ing System for diagnosing faults in the Hubble Space
Telescope (HST) Reaction Wheel Assembly (RWA).
The function of the HST RWA is to point the Space
Telescope at the proper area of the sky and keep the
telescope locked onto its target. The RWA functions

according to the principle of conservation of angular
momentum. When the telescope is stationary, the re-
action wheel moves at a small speed to counteract the
torque caused by Earth’s gravitational field. To move
the telescope, the speed of the reaction wheel is in-
creased, causing the telescope to spin in the opposite
direction. When the telescope nears its proper orienta-
tion, the spin is reversed and the telescope slows down,
There are four reaction wheels aboard HST, and the
sum of the torque forces generated by these wheels en-
ables the telescope to rotate about an arbitrary axis
[Keller 90].

5.1 Structure for a SRS Prototype

The SRS prototype was implemented in a commer-
cial shell known as the Generic Blackboard (GBB), a
toolkit based on the Common LISP Object System
(CLOS) [BBT 91]. GBB provides the facilities re-
quired to construct a typical blackboard application
including the blackboard database, knowledge sources,
and the control shell.

SRS is a modified blackboard architecture with a hier-
archical blackboard database, four reasoning modules
(i.e., CBR, RBR, CR, and MBR), and an Executive
{(control) Module. The blackboard database has one
root blackboard and four blackboards as interior nodes
(one each for the individual reasoning modules). The
root blackboard has seven spaces: Status, Symptoms,
Suspects, Actions, Diagnosis, Recommendations, and
Goals. The interior blackboards each have a smgle
space to record local information.

The CBR module is implemented through GBB’s
pattern-matching facilities. We currently maintain a
case base that includes a case number, the source of the
case (either actual or hypothetical), the list of symp-
toms, the suspected components, the diagnosis, the
list of actions taken to correct the fault, and the result
(success or failure). The identification number comes
from a LISP function call to universal time; the case
number therefore serves not only as a unique identifi-
cation number, but a means by which the CBR module
can employ temporal reasoning during follow-up.

The RBR module uses the embedded GBB/OPS infer-
ence engine as a means of implementing a rule-based
system. The RBR module treats the symptoms and
goals of the problem-solving session as facts, assert-
ing them into its knowledge base. It begins a data-
driven inference resulting in the creation of recommen-
dations or actions to be taken. As it fires each rule,
the RBR module records its consequence on the RBR
blackboard.

While the CR module can be involved in the diag-
nosis process, its primary purpose is to reason about
the domain in the absence of any faults. During nor-
mal operation, the CR module posts messages from
the user on the blackboard concerning expected out-
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ages or anomalies. When a fault is detected, the CR
module posts the symptoms on the blackboard and
surrenders control. The CR module for our prototype
is implemented in CLOS.

The MBR module diagnoses the suspected compo-
nents to determine the likely cause of the symptoms.
The MBR module is implemented in CLOS and uses
the principle of locality. This principle considers how
components are connected (mechanically, electrically,
physically) to determine how behavior of one compo-
nent can be influenced by another component [Davis
85).

The Executive Module (EM) exercises explicit control
over SRS by determining the order in which the rea-
soning modules work on the problem and coordinat-
ing the problem-solving process. It is implemented
through a combination of GBB’s control shell, knowl-
edge sources, and CLOS.

5.2 Cases for the Domain

Cases were constructed based on consultations with a
satellite analyst [Campbell 92]. A sample case 1s shown
below. The case number is universal time, representing
the number of seconds since midnight, January 1, 1900
GMT. The case number will be used as a unique identi-
fication number and a means by which the CBR mod-
ule can reason temporally during the follow-up phase,
searching recent actual cases for trends in diagnosis.

Case-Number: 2902248000 ;3;; Dec 20 1991 1500
Symptorms: ((:weak-signal)
(:calibrate-pointing :unsuccessful})
Suspect: none
Actions: ( (:cr :symptom-posted :weak-signal)
(:em :check-prior-messages :none)
(:rbr :adjust-antenna :unsuccessful)
(:cr :calibrate-pointing :unsuccessful)
(:mbr :diagnose-acs :acs-faulty))
Diagnosis: attitude-control-system
Result: successful

Source: actual

5.3 Rules for the Domain

The rules are a set of diagnostic associations relating
the readings of the temperature sensors to the possibil-
ity of faults in the bearings or electronics. An example
of one such rule concerning the rotor control electron-

ics (RCE) is:

iF Temperature of RCE-Bearing-Sensor is High,
and Temperature of RCE-Sensor is OK,
and Temperature of Tunnel-Sensor 1s OK
THEN Set Malfunction of RCE-Bearing to True.

This rule states that if the sensor for RCE-bearing
is abnormally high, and nearby sensor readings are
normal, then there must be a malfunction within the

RCE-Bearing [Keller 90].

5.4 Procedures for the Domain

As noted in the section on control guidelines, the con-
ventional reasoner is responsible for reasoning about
the environment as long as the status of the system is
nominal., For the HST RWA, the knowledge required
is the set of control algorithms that are currently used
onboard the vehicle. For purposes of the prototype,
the CR. module implements a simulator for the atti-
tude control system that enables the satellite to main-
tain its correct position and attitude. The simulator
allows the user to change the attitude of the satel-
lite relative to the Earth or to change the path of the
satellite around the Earth. The simulator fires the
thrusters as necessary to achieve the new position and
reflects the changes through graphics on the screen.

The CR module also acts as the interface between the
user and SRS. It allows the user to post messages con-
cerning scheduled maintenance on the blackboard and
to induce a fault in any of the components of the HST.
The CR module provides access to the GBB graph-
ics facilities which allow the user to view the objects
posted on the blackboard, examine their slots, and fol-
Jow links from one ohject to another.

5.5 Models for the Domain

The primary knowledge source for the models used in
the prototype of the SRS was a set of papers written
by researchers from NASA Ames and Stanford [Keller
90, Gruber 90] that cover the structural and func-
tional models for the HST RWA. Secondary sources
were used to provide details for constructing models.
The structure and function of additional components
on which the RWA depends were taken from a satel-
lite design manual [Wertz 91]. In addition, we held
knowledge engineering sessions with a satellite oper-
ator [Garnham 90] and a satellite analyst [Campbell
92] to determine how failures in the system may reveal
themselves as symptoms. The resulting set of models
is a composition of the knowledge from these sources.

6 Sample Operation of SRS

We developed a scenario to test the operation of SRS
in which the onboard sensors detected a weak signal
from the ground station. The response of the system
is useful in depicting the four aspects of synergistic be-
havior. The state of the blackboard at various points
is shown in the figures. An explanation of the events
that led to these states follows.
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6.1 Diagnosis of the RWA

The scenario begins during normal operations, with
the CR module active. When the signal strength falls
below a predetermined level, the CR module posts the
symptom on the blackboard and surrenders control.
The creation of a symptorm causes the status to change
to a fault condition which, in turn, triggers the EM.

After determining the symptom is not due to sched-
uled maintenance, the EM posts a goal to diagnose
the symptom. The RBR responds using a set of rules
that it has concerning the antenna adjustment which
allow it to increase the gain by ten percent or to cali-
brate pointing. The RBR recommends an increase in
gain which boosts the signal and alleviates the prob-
lem. The diagnosis is low-gain and (it would seem)
the diagnostic session is complete. The posting of the
diagnosis causes the EM to add three goals: confirm
the diagnosis, refute the diagnosis, and follow-up on
the diagnosis. This is SRS’s method for error checking
and increasing confidence in the conclusion. The state
of the blackboard at this point is shown in Figure 1.

Status: fault

Symptoms: (:signal-weak)

Suspect: antenna

Actions: ((:cr :symptom-posted iweak-signal)
(:em :check-prior-message :none)
{:rbr:adjust—antenna :successful)
(:cr :increase-gain tsuccessful))

Diagnosis: low-gain

Recommendations: none

Goals: ({:refute :low-—-gain)

{:confixm :low—-gain)

(:follow~up :low-gain))
CBR RBR [Conventional MBR
increase—-gain :antenna (:symptom :signal-weak 1015)

Figure 1: Sample Operation. The upper portion of
the figure shows the contents of the seven major spaces
of the top-level blackboard. The lower four boxes re-
veals the contents of the individual modules.

The CBR confirms the actions taken are the correct
response for the given symptom by finding a past case
which resulted in success. Next, the CBR attempts
refutation, but cannot find any cases in which this
tactic was unsuccessful. During follow-up, the CBR
discovers that the gain has been increased twice in the
last three hours. This trend, seen as indicative of a
deeper problem, is posted as a new symptom and di-
agnosis is continued. ’

The RBR recommends calibrating the pointing of the
antenna, but the CR module reports that calibration
failed. This is added as a new symptom and causes the

Status: fault

Symptoms:((:stial—weak)g:gain-boosted—twice)
(:calibrate-pointing runsuccessful))

Suspect: tteac

Actions: ((:cr :s tom—posted :weak-signal
(: cgzgk—prggr—messaga :nona) )

:successful

:iuccessful

:adjust—-antenna
:er iincrease-gain
{:cbr:confirm :

:cbhr:refute HY
gicbr:follow—up tcontinue-diagnosis)
(:

,-
)
=4
H

rbr:adjust~antenna isuccessful)
cr :calibrate-pointing junsuccessful))

Diagnosis: none

Recommendations: (:diagnosis :ttéc)

Goals: none

CBR RBRI [Conventional MBR
increase—gain :antenna 2:5ymptom tsignal-weak 1015)
calibrate rantenna tsymptom :p01nting—faiig?9)

Case#2508728000
S, tom :weak-sigmal
Diagnosis:low-gain

Figure 2: Sample Operation (cont’d). Through
follow-up and cooperation additional symptoms have
been identified. The CR module has recommended
that the TT&C subsystem be diagnosed.

Tracking, Telemetry, and Control (TT&C) subsystem
to be suspected. The state of the blackboard at this
point is shown in Figure 2.

The MBR module constructs a model of the TT&C
subsystem and checks each point, but no fault is found.
At this point, the EM has no specific recommendations
and must rely on the predetermined guidelines. The
CBR module is used to search for past cases, retrieving
a case in which the antenna could not be calibrated due
to a fault in the attitude control system (ACS).

The MBR builds a model of the ACS and isolates the
fault to the RWA. It cannot, however, find any mal-
function in the components of the RWA model. The
RBR module uses experiential knowledge to determine
the faulty behavior is due to a high ambient temper-
ature in the bay and recommends opening a louver to
the outside to allow heat to dissipate; closed louver
is posted as the diagnosis. Once again, confirmation,
refutation, and follow-up are posted as goals.

No confirmation is found, but the CR refutes the di-
agnosis - according to its data the louver is open. The
EM relies on the MBR to resolve the contradiction.
In diagnosing a model of the thermal control system
{which contains the louver), the MBR determines the
input to the louver motor is good, but the louver is
closed. The motor is determined to be bad and a
backup motor is employed. The final state of the black-
board is shown in Figure 3. The results are stored by
the CBR module, the blackboard is scrubbed, and con-
trol is returned to the CR module.
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Status: fault

Symptoms:((:weax—signal)(: ain-boosted-twice)
{:calibrate-poin ing-unsuccessful)
(:ambient—temperature—high srwa))

Suspect: actuator-motor—A

Actions: (s:cr 3 tom—posted sweak-signal)
:em :check-prilor-message :none)
srbr:adjust-antenna s successful)
icr :inCrease—gain :successful)
:cbr:confirm :1
;cbri:rafute
:cbr: follow—up
:rbr:adjust-antenna
ieroica ibrate—gointing
:mbr:diagnose-tt&c

HY
:continua—-diagnosis)
ssuccassful)
sunsuccassful)
:verified-sound)

:cbr: recommend :diagnose~acs)
:mbr:diagnose-acs :xwa-faulty)
:rbr:diagnosa-rva :closaed-louver)
{:cr :refute :open—-louver)
(:mbr:dia%nose—thermal ractuator-faulty)
{:cbr:confimm :0)

:cbr:rafute :0)

:cbr; follow-up nona)

ser :switch—to :actuator-B))

Diagnosis: actuator—h

Rec dations: none

Goals: none

CBR RBR IConventional MBR

:antenna : symptom :signal—weak 1015)
santenna izsymptom :pointing-failed
:xwa—ba 1019)

increase—gain
calibrate
open—louvar

Case$2908728000 antenna :good
S tom:weak—signal lifiex :good
Diagnosis:low—gain phase shifter :good
powar-supgly :good
Case$2902248000 round-output :good
S tom:calibrate—failed teéc :good
Diagnosis:faulty-acs ace :good
earth-sensor :good
sun—~sensor 1good
rate-gyro :good
rva :bad
louver :bad
actuator-A :bad
actuator-B toff
lce :good
temp-5ensors :good

Figure 3: Sample Operation Final State. The
fault has been isolated to the actuator motor. The
results will be stored by the CBR module for use in
future sessions.

6.2 Four Aspects of Synergism

This example illustrates the four aspects of synergistic
behavior: cooperation, confirmation, refutation, and
follow-up. While the original symptom was a weak sig-
nal, the actual cause was the failure of an actuator mo-
tor in the thermal control system. This failure caused
the louver to remain closed, thereby overheating the
reaction wheel assembly. This in turn prevented the
attitude control system from maintaining the correct
attitude, causing the antenna to be improperly cali-
brated. As a result, the signal strength continually
degraded, and a weak signal was observed.

Individually, none of the reasoners would have re-
sponded with a correct diagnosis. Both the CBR and
RBR modules would have attributed a weak signal to
low-gain. The CR module had no algorithm to solve
the problem. The MBR module would have diagnosed
the TT&C model, only to find all components were
sound. Yet, the reasoning modules were able to pro-
duce a proper response by collaborating on the prob-
lem.

Cooperation is the ability to construct a solution from
partial postings. Cooperation was apparent as the rea-
soning modules worked together to isolate the prob-
lem. The CBR used historical knowledge to determine
the inability to calibrate the antenna could be due to
a fault in the ACS. The MBR used structural knowl-
edge of the ACS to isolate the problem to the RWA,
but, since heat flow was not included in the model, was
unable to determine the cause of the faulty behavior.
The RBR used experiential knowledge to identify the
source of the problem as a closed louver.

Confirmation, the ability of one reasoning module to
verify the results of another module, was demonstrated
by the use of the CBR module to increase the confi-
dence of the decision to increase the gain of the an-
tenna. While this was only a temporary fix, it was the
correct response for the available information.

Refutation was exercised when the CR reported that
the louver was already open. The RBR module had
incomplete knowledge of the current configuration of
the system, leading to an erroneous conclusion that
the louver was closed. The additional information pro-
vided by the CR led to mediation of the contradiction
by the MBR.

Finally, follow-up is the ability to identify trends in-
dicative of deeper problems. This aspect of synergistic
behavior occurred when the CBR noted the repeated
gain increase. Had this not been noted as a symp-
tom of a deeper problem, an autonomous system might
have continued to increase the gain, without address-
ing the underlying thermal problem which could even-
tually cause permanent damage.

7 Conclusions

We have designed an architecture that allows diverse
reasoning paradigms to be integrated in a cohesive
manner. We have enhanced the advantage of this in-
tegration by selecting four reasoning methods that are
complementary in that they provide a convenient man-
ner to gather and represent contrasting knowledge.
During the knowledge engineering phase of develop-
ment the use of multiple approaches allows the prob-
lem to be viewed from many angles, resulting in a more
complete picture of the domain. During execution, the
system employs this diverse knowledge in a collabora-
tive fashion to capitalize on the collective advantages
of the methods shown in Table 1, while diminishing
the effect of their individual weaknesses.

The combination of the paradigms provides an ability
to employ historical, experiential, procedural, causal,
and structural knowledge during a problem-solving
session and thus enables SRS to solve all problems
solvable by any of the four reasoning methodologies
individually. The control guidelines developed from
established principles of blackboard control and our
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research of reasoning characteristics allow the system
to produce a synergistic effect through cooperation,
confirmation, refutation, and follow-up. The proto-
type demonstrated this synergistic effect by solving a
problem that none of the individual reasoning method-
ologies could solve.

While we have presented SRS as an approach to diag-
nostics, it represents an efficient and robust problem-
solving model that can be applied to any domain suit-
able for one or more of the four reasoning method-
ologies employed. It also provides a basis for future
research in integrating reasoning paradigms.
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